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A stationary axially-symmetric magnetohydrodynamic plasma flow in an azimuthal magnetic field in a 

plasma accelerator channel is considered. In the “smooth” flow approximation the form of the critical 

suface (the magnetosonic velocity transition surface) is investigated. It is shown that in a nonpotential flow 

the formation of bounded supersonic flow regions on a background of subsonic flow is possible. Using an 

example of potential flow some properties of plasma flows are considered. In particular, the possibility of 

establishing flows with anomalous density behaviour is demonstrated. Flow in a narrow annular gap of 

constant size is considered. 

1. STATEMENT OF THE PROBLEM 

WE CONSIDER stationary axially-symmetric magnetohydrodynamic flow in a cylindrical system of 
polar coordinates r, q, z in a channel formed by two coaxial electrodes R,(z) and R2(z). We shall 
assume that the velocity has two components v, and v, (later denoted simply by v) and that the 
magnetic field has a single azimuthal component H. We assume the moving medium to be 
nonviscous, nonheat-conducting and a perfect electrical conductor. We further assume that the 
functions RI (z) and R2(z) depend only weakly on their arguments, so that one can ignore second 
derivatives with respect to z and squares of the first derivatives with respect to z (“smooth” flow). 
With the additional condition of isentropy such a flow is described by the equations [l] 

++) + w (P) + V2X2 (4) = u (W 

(1.1) 

(1.2) 
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Here + is the hydrodynamic stream function, W(p) is the enthalpy, and we shall assume 
throughout that W(p) = wc,pyV1. 

We shall suppose that on the inner electrode Jr = 0, and on the outer electrode + = IJJ~. The z 
dependence of the unknown quantities remains in the form of a z dependence of the constants of 
integration of Eqs (1.1) and (1.2). 

When investigating MHD flow in a transverse magnetic field there is the interesting question of 
the transition across the magnetosonic velocity c, = dyplp + H*/(~IT~) and of the form of the cri- 
tical surface at which this transition occurs. The equation of the latter is given by the condition 

$=c2=(y_ s 1)W (P) + Pr2x2 (9) (1.3) 

For brevity we shall later use the term “velocity of sound” to mean the thermal velocity of sound 
c, = d\/?~pIp in gas-dynamic flow and the magnetosonic velocity in MHD flow. One must similarly 
interpret the term “supersonic”, etc. 

Using the Bernoulli integral (1.2) one can find the critical velocity V* (equal to the local value of 
c,) on a given streamline in certain special cases: 

2 _ 2 (Y - I> LJ Wl(r + 1) for w > P2X2 
u* - 1 2/JJ (4)) for W <pr2x2 or for y=2 

(1.4) 

Potential flows (U($) = const, x(+) = const) were investigated in detail [l, 21 for the cases 
W% pr2x2 (ordinary gas dynamics) and We pr2x2 (a strong magnetic field or “cold” plasma). It was 
shown that the critical surface was a plane, and the inclusion of small terms in Eqs (1.1) and (1.2) in 
the case of strong or weak (but finite) magnetic fields [l, 21, the inclusion of derivatives with respect 
to z and weak deviation of the function ~(IJI) [l] from constancy distorted the shape of the critical 
surface, but that these effects were small corrections. Below we shall investigate the problem of 
critical surfaces in those cases when the deviation from potential flow is not assumed to be small. 
Furthermore, we shall consider some features of MHD flow which do not take place in ordinary gas 
dynamics. 

2. ISOMAGNETIC FLOW 

In [l] a flow in which x (JI) = x0 = const was called isomagnetic. In this case Eqs (1.1) and (1.2) 
have the first integral 

W (p) + prX2 = C (b) (2.1) 

where C(z) is an arbitrary slowly varying function. Using the Bernoulli integral (1.2) we can write 

c (2) = u ($) - u212 (2.2) 

If the velocity is known along some streamline, this also determines the function C(z). We shall 
assume that the velocity V(z) is known along the inner electrode. The acceleration regime 
(V’(z) >O) corresponds to a decreasing function C(z). It follows from Eq. (2.2) that the velocity 
increases or deceases simultaneously along all trajectories. 

Relation (2.1) determines the implicit function p(r, C(z)). Substituting it into (1.2) we obtain 

=I/2 r prdr s 
R,(z) 

(2.3) 
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The function p(r, C(z)) can, in general, only be found by numerical solution of Eq. (2.1). Cases 
are, however, possible when it can be expressed explicitly. This significantly simplifies the problem. 
Suppose that in (2.3) the upper limits of integration are &,, and R*(Z), respectively. Then the 
left-hand integral is a function of z which can be expressed in terms of the function C(r). The 
right-hand integral is also a function of z; it can be represented as a product of two factors, one of 
which only depends on the function C(z) and the other [which we shall denote by G(z)] only 
depends on the functions RI (z) and R2(z). This in fact solves the problem of constructing the shape 
of the channel from a given velocity at the inner electrode or the inverse problem of finding the 
velocity along the inner electrode in a channel of given shape. (The inverse problem may, in 
general, not have a solution, for details see [I].) 

Thus, in the following special cases, the function p(r, C(z)) is expressed explicitly: 

W(P) >pr2%12, P = 
mJ-1) Raa (z) - R12 (z) 

, G(z) = 24l(V-l) 

W (p) < pr2x02, p = -$$- , G (z) - G In $-# 

(2.4) 

(2.5) 

(2.6) 

Equation (1.3) takes the form 

U2 = ac (2) (2.7) 

where cx = y - 1 for gas-dynamic flow and a = 1 in other cases. It follows from this, using (1.4), that 
at a sonic transition point on a given streamline the equality 

c, = 2U ($)/(a + 2) (2.8) 

is satisfied. 
On the other hand, (2.2) implies C(z)<rnin,,,U(~J~). Hence the flow at the entrance will be 

completely subsonic if 

urnaxfumin < (1 + a/2) (2.9) 

We consider, for simplicity, a linear relationship 

CJ (N = u, + u$l&nr u, > --u0 (2.10) 

It follows from condition (2.9) that the following restrictions apply to U, 

-al(a f 2) < UiIU, < al2 

Substituting expression (2.10) into (2.3) and integrating over the entire section we obtain 

F (C (2)) = (UJ~~)G (a)/$, (2.11) 

where 

F(C) = (VU,, +U,- C-J&,-- C)/Pfa 

and the function G(z) is determined by formulae (2.4)-(2.6). The extremum of the function F(C) is 
reached at 

c, = 2 12u, f u, - 1/Ui2 + a2U0 (U, + U,)V(4 - a”) 
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F C *t c+ &I U0’ u, 
D 

FIG. 1 

(a < 2) and under the condition of continuous acceleration (C’(z) < 0) corresponds to a minimum of 
the function G (2). One can verify that 

C,i< C+< C,, for u,>O; C,,< C+< Cei for u,<O (2.12) 

where C,i and C*2 correspond to sonic transition points at the inner and outer electrodes and are 
determined from Eq. (2.8) 

C*i = x7,/@ + 2), C,, = 2 VII + U,)/(a + 2) 

Inequalities (2.12) mean that nonuniformity of the distribution U(+) leads to distortion of the 
critical surface. A graph of F(C) is shown in Fig. 1. 

Consider the case when Ui > 0 (Fig. la). Discontinuous acceleration corresponds to a transition 
from the ascending branch of the curve F(C) to the descending branch. Here the sonic line (the 
intersection of the critical surface with the plane longitudinal section of the channel) has the form of 
the curve AB (Fig. 2a). If C decreases to C, then the transition to the other branch does not occur 
and the sonic line has the form of the curve AC. When the minimum value of C increases from C, to 
C*2 the sonic line contracts to the point D. 

In the case when U1 <O (Fig. lb), as in the previous case, discontinuous acceleration corresponds 
to a transition from the descending branch of the curve F(C) to the rising branch, and the sonic line 
has the form of the curve EG (Fig. 2b). If the transition to the other branch of the curve does not 
occur, the sonic line has the form of the curve EF for the minimum value of C = C, . Increasing the 
minimum value of C to C*i leads to contraction of the sonic line to the point H. 

FIG. 2. 
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We note the following: the strictness of inequalities (2.12) means that the curves AC and EF 
cannot touch the outer and inner electrodes, respectively. 

These discussions have a direct meaning if the shape of the electrode Ri (z) and the velocity V(z) 
at that electrode are given, i.e. C(z). In this case Eq. (2.11) means that the function R2(z) can be 
expressed explicitly in terms of the functions RI (z), V(z) and the parameters Uc, U1, x0 and 9, 
(i.e. the mass flux). If, however, the geometry of both electrodes is known, together with the 
freezing-in parameter x0 and the distribution U(4), then (2.11) defines an implicit function 
C(z, JI,). Obviously, the quantity +m cannot be arbitrary, and its maximum value is 

4, = D/F (C,), D = (U,/1/2) min, G (z) (2.13) 

For this value of 31, the function C(z) at the minimum point of the function G(z) achieves the 
value C,. Hence (2.13) is a necessary condition for supersonic transition on each streamline. 
Furthermore, for JI- < +, < $+, where 

+_ = D/F (C_), C_ = max (C,i, C,,) 

there exists a supersonic flow domain in the channel which is attached to one of the electrodes, 
(depending on the sign of Ur ). For +,,, < +- the flow is completely subsonic in the channel. 

The equations for the critical surfaces R*(z) in the cases under consideration can be written 
explicitly. Substituting expression (2.10) into (1. l), we integrate 

pr dr (2.14) 

Note that the direction of increase of the function II(+) and the distribution of v in the transverse 
section are identical. We substitute the expressions for the density from (2.4)-(2.6) into (2.14) and 
integrate. We then substitute the resulting v (r, z) into (2.7) and find the critical surfaces 

RI2 (2) + zf#(‘-‘)Q (z), W > pr2x02 
re2 (2) = RI2 (2) exp [xo2Q (z)], W < pr2x02 

IIwolxo” + RI2 (41 exp Ixo”Q Ml- w,Ixo2~ Y = 2 

Q (z) = ?& J’-ac (2) --I;b’tz;o - c (z)) 

The formation of bounded domains of supersonic flow in the subsonic flux was observed in 
calculations of two-dimensional gas-dynamic flow in nozzles [3]. 

3. FLOW IN A STRONG MAGNETIC FIELD 

2 We consider plasma flows for which W+ pr x . 

PI 
2 In this case Eqs (1.1) and (1.2) have a first integral 

f+.2x NJ) = c (2) (3.1) 

where C(z) is an arbitrary slowly-varying function. From the Bernoulli integral (1.2) we obtain 

c (2) = [U (11) - uV2llx ($) (3.2) 

As previously, we determine the function C(z) giving the velocity V(z) along the inner electrode. 
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The acceleration regime [V’(z) >O] corresponds to a decreasing function C(z). It follows from (3.2) 
that acceleration or braking occurs simultaneously on all streamlines. 

Equation (1.3) in the case under consideration takes the form 

29 = x ($) c (2) 

From this, using the formula for the critical velocity (1.4), we obtain 

C, = 2/,u ($Yx ($) (3.3) 

On the other hand, it follows from (3.2) that C(z) <min,{U(~)lx(~)}. Hence the flow at the 
entrance will be completely subsonic under the condition 

max+ VJ (@lx (*)Y min+ VJ (N/x (9)) < 3/2 (3.4) 

Substituting expression (3.1) into Eq. (1.2) we find 
‘II, s x Ob,) dll, 
o v-u WI- x (4) c (2) 

+‘ZC(z)ln+ (3.5) 

For simplicity we put 

u (g) = &, x (N = x0 exp (N&J 

Condition (3.4) acquires the form 

In =I3 < a < In 3/2 

(3.6) 

Substituting (3.6) into expression (3.5) and integrating over the entire section, we obtain 

F(C(2)) = V;+ In * 
?n 

where 

F (C) = (l/U, - bx,C - vm)lC2, b = exp a 

The graph of the function F(C) is similar to that shown on Figs 2(a) and (b), its extremum being 
reached at 

c = Uo(b+l) 
+ 2b l- 

326 

9 (b + 1)’ I 

and under the condition of continuous acceleration [C’(z) < 0] corresponds to the minimum point of 
the function R2 (2)/R, (2). Investigation shows that 

C,, < C, ( C,1 for a > 0; C,, < C, < C*, for a < 0, (3.7) 

where C*l and C*2 correspond to sonic transition points on the inner and outer electrodes. From 
(3.3) they are given by the expressions 

C,i = 2/3UoIxo, C,, = 2/3Uo I (‘bx,) 

Inequalities (3.7) mean that the critical surfaces are distorted. 
The analysis of the cases when a > 0 and a < 0 is completely similar to the above analysis of 

isomagnetic flow. An increasing z(+) corresponds to Fig. 2(b) and decreasing z(+) to Fig. 2(a). We 



Properties of plasma flows in channels 663 

note that for fixed channel geometry a necessary condition for a transonic transition on each 
streamline is 4, = ++, where 

I$+ = DjF (C,), D = --&In [min,{*}] 

For +.- < & < $+, where 

$- = D 1 F (CJ, C_ = max (C,l, C,,) 

there exists a supersonic flow domain in the channel attached to the external electrode in the case 
when a <O and the internal electrode when a >O. For & <$- the channel flow is completely 
subsonic. For JI, > ~JJ+ , stationary flow, as described by Eqs (1.1) and (1.2)) is impossible. 

We shall obtain expressions for the velocity v. To do this we substitute expression (3.6) into (1.1) 
and use relation (3.1). Then 

u = v (2) - &.$ZLln L 
m h(z) 

We note that the directions of increase of the function x(+) and the velocity distribution v are 
opposite in the transverse channel section. 

4. SOME FEATURES OF PLASMA FLOW 

Plasma flows in channels have certain properties which can be already seen in the example of potential flow. 
We recall that in this case, according to (l.l), the z-component of the velocity depends only on t: v = V(z). In 
those special cases when the function p(r, z) can be expressed explicitly, integration of Eq. (2.3) over the entire 
section gives 

$m = Q (V (4) G (4, Q (VI = V (u, - Va/2) 

[G and p are defined by (2.5) and (2.6)]. 

(4.1) 

1. It follows from expression (4.1) that the critical velocity V* = m is attained in the section when 
G(z) = min. We consider the case y = 2. Using the fact that x0 = HOl(V’%POrO) and w0 = 2p01p0, where all 
quantities with zero indices refer to a point on the inlet section, we can represent G(z) in the form 

G (z) = Y& In Bo + R22 (W02 83.~0 

0 p. + R12(z)jro2 ' fJO = H,a 
(4.2) 

The point z* corresponding to the minimum of the function G(Z) is determined by the equation G’(z) = 0. If 
z1 and zz , the extremal points of the functions Ri (z) and R*(z), do not coincide, then this equation determines 
an implicit dependence z* (PO). In other words, the position of the critical surface (in this case a plane) depends 
not only on the channel geometry, but also on the inlet parameter PO. The interval in which the value of z* can 
vary is bounded by zi and z2. In gas-dynamic flow z always coincides with the minimum point of the function 
R22(~) - R12(z) irrespective of whether z1 and 22 coi*ncide or are different. 

2. It was shown in [l] that regimes with anomalous density behaviour are possible in MHD theory when the 
directions of velocity and density increase along the trajectories coincide. In gas-dynamic flow they are always 
opposite. To be specific we will consider the acceleration regime. For simplicity we put RI(z) = R = const. 
Substituting expressions (2.5) and (2.6) into the formula 
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one can find a domain of anomalous acceleration (vVp>O) for a given function V(z). It lies in the subsonic flow 
and is given by the conditions 

+’ (&r$ + R2) P (z) - f&,2, i 
Rap (z), $2’ 4 pr%@ 

7 = 2 

P (z) = oxp {VZ (z)i[ 1.:” - “izVZ @)I} 

For flow in a channel of fixed geometry we obtain the condition for normal acceleration. The requirement 
vVp < 0 means that 

V2 (z) > ~U,,X,~G (z)/[l + 3x02G (z)] (4.3) 

Because the function V(z) is increasing, while for z< z* the function G(z) decreases, for normal acceleration 
throughout the channel it is sufficient that condition (4.3) be satisfied at the inlet section .z = 0. Finally we 
represent the sufficiency conditions for normal acceleration in the form 

i 
(1 -!- g&Y* 11’ -6$ pr2x,2 

AoZ> (1 + g)l[(f + Bo) b-1, v = 2 

where A0 is the inlet value of the AlfvCn number. In the first case it is taken at an arbitrary point of the inlet 
section, and in the second, at the same point as PO. In these formulae g = 2x0*G(0). 

3. For the case y = 2 we consider flow in a narrow annular gap of constant size: 
R2(z) -R, (z) = HOemin,R1 (2). With this condition the function G(z) defined by expression (4.2) takes the 
form 

G (2) = (hoi?co2)R, (z)/[&,rue -I- RI2 (z)], ru -= R, (0) 

and the function Q(Z) from (4.1) has extrema at the points rl and z2: RI’ (zl) = 0 and RI (22) = roa. Sup- 
pose, to be specific, that R,(z) has the form shown in Fig. 3, If a subsonic flux is incident on the entrance to 
such an annular gap, V(0) <V%?&, then it will be accelerated when &< 1, while for PO> 1 it will be slowed 
down in the interval z< q and accelerated in the interval z2 < z< z1 The sonic transition is possible at the point 
z, . Figure 3 shows the signs of the velocity derivative at various intervals of the curve RI(z), the signs under the 
curve corresponding to transonic flow. At the points zz- and zZs the velocity has local extrema. Thus, unlike 
the arbitrary “smooth” flow, for which O< V(z)<V’%& [which follows from the Bernoulli integral (1.2)], in a 
narrow gap of constant dimensions the flow velocity takes values in a narrower range, bounded by the positive 
roots of the equation 

v (U, - ii2/2) = q 

where q = 2&,roq,2V$&o, and the quantity $, satisfies the transonic transition condition: 9, = (2U,,/3)3’2/ 
G ml” . 
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The evolution equations for nonlinear seismic waves possessing a bounded range of frequencies with 

increasing amplitudes are analysed. It is shown from the evolution equations that the momentum of the 

system is conserved, and properties of the energy functional are investigated. The spatial period of the 

mode with the greatest amplification of the initial perturbation is studied. Conservation of convective 

nonlinearity leads to a stable stationary structure travelhng with the velocity of the nonlinear seismic waves. 

1. A GENERALIZED model of a visco-elastic body with internal oscillators was proposed [ 1,2] for the 
mathematical study of nonlinear seismic waves. For weak one-dimensional plane longitudinal waves 
it reduced to a generalized Burgers-Korteweg De Bries equation 

(1.1) 

where v is the velocity of the displacement and the A,, are positive numbers. Equation (1.1) was 
obtained by a perturbation method. This equation is general because it was the case N = 6 that was 
considered. Furthermore, the coefficients A, were chosen so that there existed a range of oscillation 
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